
b .
8 8

. I

Randall Brouwer and Mhvira j B4nerjee

Computer Systems Group
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
1101 W. Springfield Ave.

Urbana, IL 61801
(217) 333-6564

.

In this paper we present a new parallel simulated annealing algorithm for channel routing on

a P processor hypercube. The basic idea used is to partition a set of tracks equally among proces-

sors in the hypercube. In parallel, P / 2 pairs of processors perform displacements and exchanges of

nets between tracks, compute the changes in cost functions, and accept moves Using a parallel

annealing criteria. Through the use of a unique distributed data structure, we are able to minimize

message traf€ic and add versatility and ef6ciency in a parallel routing tool. The algorithm has been

implemented and is being tested on some of the popular channel problems from the literature.

/6ASB-CR-180563) A PABALLEL ALGCEITfiH EGB N87-265 18
C b k N P E L BC;OTIIE;G G 1 A BYPERCflII (I l l i n o i s
U G ~ V -) 12 p A v a i l : h l l S EC B O i / l ! ! E A 0 1

CSCL 09B Unclas
G3/61 0 0 6 9 6 1 0

Acknowledgement This rucuch was supported in p u t by the National Aeroarutia and Spux Administration under
contract NASA NAG 1-613. Pleue addm all corrupondcnca to seeond author.

' ' *

b .
1

1. Introduction

Over the past few years. much research has been directed toward ways to apply simulated

annealing, a multivariate optimization technique [l]. to many difficult problems in computer aided

design. Some of these include logic minimization [2], cell placement i3.41, global routing [SI. and

detailed routing [6]. These research efforts have demonstrated that ncar-optimal results can be

achieved for NP-hard problems using simulated annealing. The major hawback to the use of

’ simulated annealing is the excessively long run times required to achieve good results. Some recent

work has applied simulated annealing to parallel architectures to reduce the long run times.

Extremely good results have been shown for parallel standard cell placement algorithms [7,8,9,10]

and parallel global routing algorithms Ell].

..

The problem of channel routing deals with a rectangular wiring area called a channel with

pins on the top and bottom edges of the channel, and a collection of nets which are sets of pins that

must be interco~e~ted. Nets are touted with horizontal wire segments on one layer and vertical

wire segments on another. Connections between the two layers are made through via holes. The

objective of a channel router is to interconnect al l the nets so as to minimize various criteria such as

the area of the channel and the number of vias used. Several algorithms for channel routing exist

in the literature that apply heuristics. Since they are greedy algorithms, they have the possibility

of getting stuck at local minima [12,13.14.15,161.

Recently Leong, Wong, and Liu [6] have proposed a uniprocessor simulated annealing channel

routing algorithm: however, long run times are required to achieve good routings. The algorithm

they employed requires the detection of cycles in the vertical constraint graph: however. it is not

feasible to detect cycles in a parallel processing environment. Furthermore. their algorithm is

unable to handle switch-box routing. obstacle avoidance, and unrestricted doglegging, all of which

are important in any good routing tool.

2

In this paper, we present a new parallel simulated annealing algorithm for channel routing.

Parallelizing a uniprocessor algorithm should provide faster run tines. Additionally, we hope to

achieve better convergence due to the parallel state changes as was experimentally observed in a

parallel algorithm for cell placement 1101. The algorithm we propose is also more versatile, as it

can easily be extended to include switch-box routing, unrestricted doglegging, and obstacle

avoidance. Unlike the simulated annealing channel router mentioned earlbk. our algorithm permits

overlap between distinct nets in early stages of the annealing process. allowing more freedom for

getting out of local minima and finding a global minimum.

2 Description

21. Parallel4hAlitccture

The algorithm we present in this paper is targeted for implementation on the Intel iPSC

Hypercube Qmputer. A hypercube computer is a message passing architecture consisting of P = 2d

processor nodes in which each node is directly connected to d other nodes. Communication between

the processor nodes is restricted to passing variable sized messages between adjacent nodes. Figure

1 shews a three-dimensional hypercube.

To partition the data uniformly among all processors of the hypercube, adjacent tracks of the

channel are grouped together and assigned to a single processor. W e de6nt the processor domain

PDi as the set of adjacent tracks along with all nets currently assigned to the tracks of the channel

over which processor Pi is given control. Consecutive domains are assigned to adjacent processor

nodes in the hypercube topology to provide a balance in communication distance. Figure 2 shows a

channel partitioning for a hypercube with dimension dm3. This partitioning arrangement allows

for net displacement to adjacent domains and to other domains separated by large vertical distances

3

in the channel. At high temperatures in the annealing process. the algorithm can allow moves

across both small and large distances in the hypercube. At lower temperatures, moves along

dimensions that correspond to large vertical distances are inhibited.

2.3. Movw

In the restricted doglegging version currently implemented, four move types are provided for

permuting the current state of the channel into a new state. Given that Pi and P’ are connected in

dimension k of the hypercube, the moves are as follows:

Move 1: Pi and PI independently displace a net from one track in their respective domains to

another track in the same domain.

Move 2: Pi displaces net from track in PDi to PD, of Pi.

Move 3: Pi and PI independently exchange track assignments of two nets in their respective

, domains.

Move 4: Pi exchanges net from PDi with net from PDI of PI.

Sequences of these exchange and displace moves are sufTicient for all permutations of the channel

state. These moves are chosen randomly, with relative frquencies of 4:4:1:1 respectively.

24. Algorithm

The annealing algorithm we use is outlined in Figure 3. The value of inner-loop_count is

specified to be 100 times the number of nets in the given channel routing problem. During each

iteration of the inner loop, each of the d dimensions of the hypercube is sequenced through in

which each of the P/2 processor pairs in dimension k attempt one of the four types of moves in

parallel.

4

2s. AMealingschdule

The annealing temperature is adjusted based on the following schedule:

T m = AtPHA(T) X Tau,

in which the function ALPHA (T) ranges from 0.8 for large values of T to 0.95 for small values of

T. This schedule allows more permutations at low annealing temperaturk to make many small

improvements.

To determine the initial temperature, 100 random moves with a positive cost change are

evaluated without accepting any of them. The average cost change A C O S A V ~ for those moves is

then calculated. and we solve for TIN^^ as follows:

26. CostFunction

The cost for a given state of the channel is a function of the amount of overlap between

unique nets(0L). the length of the nedNL). the width of the channel(WC), and the fraction of the

track not occupied by nets(FU). For each move, the cost change incurred if the move was accepted

is calculated as follows and used to determine move acceptance.

Since move costs are calculated in parallel. the calculated cost change is only an estimate because it

does not account for interactions on the channel state by other processor pairs accepting moves.

Jones and Banerja [lo] have shown, experimentally. that this property of parallel simulated

annealing improves the overall convergence for the cell placement problem. We are expecting to see

the same benefits in the channel router problem.

. '

5

27. Distributed Data Strumare

Since a hypercube computer is a message passing local memory parallel architecture, there is

no shared memory, and one cannot assume the use of a central data structure for storing all of the

channel state information. We therefore propose a distributed data Structure among processors in

the hypercube such that each processor only stores the information that it needs for performing its

computations. The data structures we propose help minimize the a m o k of message passing

required, reduce the memory space used for storing the necessary data, and take advantage of the

fact that the cost of a message is almost independent of the message size. For each net n in PDf of

pi the positions of the horizontal and vertical segments of net n, along with the positions of all

other vertical segments of nets also occupying the columns of net n must be stored. All of this

data is necessary for calculating the expected overlap, channel width, and net length changes for a

given move. The data-tures used for storing the track and column data for one processor node

is shown in Figure 4.

2.8. NetLocationUpdat.Ang

To ensure straightforward and accurate updating of net positions in the new channel state. the

position data for those nets is passed from node to nod0 along a Hamiltonian cycle through every

node of the hypercube. A Hamiltonian cycle in a graph is defined as a cycle in a graph which

traverses every node of the graph exactly once. A Hamiltonian cycle in a 3 - d b d o n a l hypercube

is shown in bold lines in Figure 1. Each node updates the data it has and then forwards the mes-

sage to the next node along the cycle. All updating completes within P time steps.

39 Implemestation

We have implemented the above algorithm using 3500 lines of C code using an Intel Hyper-

cube SimulatodVersion 3.0) running on a Sun 3/50 workstation operating under Sun Unix 4.2.

The initial version of our program was debugged one week ago. We are presently carrying out tests

6

of our parallel algorithm on various test cases. Figure 5 shows an example solution of a problem

found in the literature [131.

Figure 6 shows a plot of the annealing channel cost as a function of temperature. We will be

reporting the results of our algorithm for many of the other conventional channel routing test cases

in the h a 1 paper at the conference, and we plan to implement this version on an actual hypercube

and report on the performance (ie. speedup. etc.) at the conference.

4. Conclusions

In this paper we have proposed a new parallel algorithm for simulated annealing channel

routing for implementation on a hypercube computer. By the use of a novel distributed data struc-

ture and partitioning of the Ehannol, we have a versatile algorithm for channel routing that is

easily extensible to switch-box routing and obstacle avoidance routing.

7

[l]

E21

[31

[41

[51

161

[71

S. Kirkpatrick. C. D. Gelatt. and M. P. Vecchi. "Optimization by Simulated Annealing,"
Science. vol. 220. pp. 671-680, May 1983.
J. Lam and J. M. Delosme. "Logic Minimization Using Simulated Annealing." A.m. IEEE Int.
Conf. Computer-Aided Design (ZCCAD-86). pp. 348-351. Nov. 1986.
C. Sechen and A. S. Vincentelli, "TimberWolf3.2: A New Standard Cell Placement and
Global Routing Package." Rae. 23rd Design Automation Conf. .. pp. 432-439. Jun. 1986.
L. K. Grover, "A New Simulated Annealing Algorithm for Standard Cell Placement," Roc.
Int. Conf. on COmputer-Aided Design (ICCAD-86). pp. 378-380. Nov. 1986.
M. P. V w h i and S. Kukpatrick, "Global Wiriig by Simulated Annealiig." IEEE
Transactions on COmputet-Aided Design. v01. CAD-2, No. 4, pp. 215-222. October 1983.
H. W. Leong, D. F. Wong, and C. L. Liu. "A Simulated Annealing Channel Router." Roc.
22nd Design Automation Conf... pp. 226-228. June 1985.
A. Casotto. F. Romeo. and A. Sangiovanni-Vincentelli. "A Parallel Simulated Annealing
Algorithm for the P-lacunent of Macro-cells." Roc. IEEE Int. Gmf. COmputet-Aided Design
(I C C M) . pp. 30-33. Nov. 1986.
R. A. Rutenbar and S. A. Kravitz. "Layout by Annealing in a Parallel Environment." Roc.
IEEE Int. Gmf. on Computer Design fICCD-86). pp. 434-437. Oct. 1986.
P. Eberjee and M. Jones. "A Parallel Simulated Annealing for Standard Cell Placement on a
Hypercube Computer." Roc. IEEE Int. Gmf. Computer-Aided Design (Iccturss), Nov.
1986.
M. Jones and P. Banerjce. "Performance of a Parallel Algorithm for Standard Cell Placement
on the Intel Hypercube." A.M. 24th Design Automation G m f . , June 1987.
M. J. Chung and K. K. Rao. "Parallel Simulated Annealing for Partitioning and Routing,"
ROC. IEEE Int. Conf.
A. Hashimoto and J. Stevens, "Wire Routing by Optimizing Channel Assignment," Roc. 8th
Design Automation Gmf... pp. 214-224. June 1971.
T. Yoshimura and E. S. Kuh. "Efficient Algorithms for Channel Routing." IEEE Trans.
Computer-Aided Design. vol. CAD-1, pp. 25-25. Jan. 1982.
R. L. Rivest and C. M. Fidducia, "A Greedy Channel Router." Roc. 19th Design Automution
Conf. .. pp. 418-424. June 1982.

[81

[91

[lo]

[111

[121

[131

1141

Coonprtst Design (ICCD86). pp. 238-242. Oct. 1986.

1151 , D. Deutsch. **A Dogleg Channel Router." Roc. 13th Design Automation. pp. 425-433. June
1976.

[161 M. Burskin and R. Pelavin. "Hierarchical Channel Router." Proc. 20th Design Automatwn
Conf.. pp. 591597. June 1983.

8

Figure 1. 3-~imensional Hypercube Showing a Hamiltonian Cycle
e

I--
} ----
I--
}--
I--
I-
}-
}--*

Figure 2. Channel Map onto Hypercube of 3 Dimensions

9

STEP 1. Perform track assignments to P processors.
STEP 2. Determine initial annealing temperature.
STEP 3. While "Stopping criteria" : temperature < I not reached
STEP 4. Generate new temperature according to annealiig schedule
STEP 5. For inner-loop-count - 1 to USER-PARAMETER
STEP 6. For each dimension k - 0 to log(P)-l do
STEP 7. Randomly select P/2 moves (exchange or displacement of nets) in parallel among pairs of

PES connected in dimension It.
STEP 8. Evaluate change in cost for each move between pairs of PES indep&dently.
STEP 9. Acceptlreject moves based on exponential function independently.
STEP 10. Broadcast new net locations to all other processors using Hamiltonian cycle.
STEP 11. ENDFOR; ENDFOR; ENDWHILE;

Figure 3. Parallel Algorithm for Channel Routing

c

4 . .

10

Figure 4. (a> Track Data Structure (b) Column Data Structure

.. I c

11

a a

1 I
a a
I

a
a

I

I I I I m

Figure 5. Example Routing Solution

4o0001

I I I I I I
0.1 1 10 100 lo00 loo00

Figure 6. Temperature vs. Cost
Annealing Temperature

